A Supervised Classification Approach for Measuring Relational Similarity between Word Pairs

نویسندگان

  • Danushka Bollegala
  • Yutaka Matsuo
  • Mitsuru Ishizuka
چکیده

Measuring the relational similarity between word pairs is important in numerous natural language processing tasks such as solving word analogy questions, classifying nounmodifier relations and disambiguating word senses. We propose a supervised classification method to measure the similarity between semantic relations that exist between words in two word pairs. First, each pair of words is represented by a vector of automatically extracted lexical patterns. Then a binary Support Vector Machine is trained to recognize word pairs with similar semantic relations to a given word pair. To train and evaluate the proposed method, we use a benchmark dataset that contains 374 SAT multiple-choice word-analogy questions. To represent the relations that exist between two word pairs, we experiment with 11 different feature functions, including both symmetric and asymmetric feature functions. Our experimental results show that the proposed method outperforms several previously proposed relational similarity measures on this benchmark dataset, achieving an SAT score of 46.9. key words: relational similarity, supervised classification, support vector machines, word analogies

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributional semantics beyond words: Supervised learning of analogy and paraphrase

There have been several efforts to extend distributional semantics beyond individual words, to measure the similarity of word pairs, phrases, and sentences (briefly, tuples; ordered sets of words, contiguous or noncontiguous). One way to extend beyond words is to compare two tuples using a function that combines pairwise similarities between the component words in the tuples. A strength of this...

متن کامل

Improving relational similarity measurement using symmetries in proportional word analogies

Measuring the similarity between the semantic relations that exist between words is an important step in numerous tasks in natural language processing such as answering word analogy questions, classifying compound nouns, and word sense disambiguation. Given two word pairs (A,B) and (C,D), we propose a method to measure the relational similarity between the semantic relations that exist between ...

متن کامل

Measuring Semantic Similarity by Latent Relational Analysis

This paper introduces Latent Relational Analysis (LRA), a method for measuring semantic similarity. LRA measures similarity in the semantic relations between two pairs of words. When two pairs have a high degree of relational similarity, they are analogous. For example, the pair cat:meow is analogous to the pair dog:bark. There is evidence from cognitive science that relational similarity is fu...

متن کامل

Similarity of Semantic Relations

There are at least two kinds of similarity. Relational similarity is correspondence between relations, in contrast with attributional similarity, which is correspondence between attributes. When two words have a high degree of attributional similarity, we call them synonyms. When two pairs of words have a high degree of relational similarity, we say that their relations are analogous. For examp...

متن کامل

Measuring the Degree of Synonymy between Words Using Relational Similarity between Word Pairs as a Proxy

Two types of similarities between words have been studied in the natural language processing community: synonymy and relational similarity. A high degree of similarity exist between synonymous words. On the other hand, a high degree of relational similarity exists between analogous word pairs. We present and empirically test a hypothesis that links these two types of similarities. Specifically,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEICE Transactions

دوره 94-D  شماره 

صفحات  -

تاریخ انتشار 2011